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Internal waves around a body moving in a 
compressible density-stratified fluid 
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A body is started from rest and moves on an arbitrary path in an inviscid isother- 
mal compressible atmosphere. The phase configuration of the internal waves and 
the gravity-modified acoustic waves which are generated by the body is studied 
using small amplitude wave theory. When the body moves a t  supersonic speeds 
and the background density gradient approaches zero, it is shown how the wave 
solutions approach the pure acoustic wave solutions of Lilley et al. (1953). 

1. Introduction 
Recent experimental evidence indicates that acoustic gravity waves can be 

generated in the atmosphere by various natural and artificial sources such as 
earthquakes, severe weather fronts and nuclear explosions (see Liu & Yeh 
1972). Oscillatory waves under the combined action of gravity and compressi- 
bility have been discussed in detail by Moore & Spiegel (1964) and by Lighthill 
(1967). Liu & Yeh (1972) considered the theory for point disturbances travelling 
in a horizontal plane with constant velocity in an isothermal atmosphere. Solu- 
tions for the waves around a two-dimensional body moving with a constant 
velocity a t  an angle to the horizontal have been evaluated by Rarity (1973) and 
solutions involving a superimposed forced oscillation by Silcock (1 973). 

I n  the present paper, equations are given for the phase configuration of the 
waves about a point disturbance moving on an arbitrary path in an isothermal 
atmosphere. A superimposed oscillation of the forcing region is included in the 
analysis. The theory for the Cauchy-Poisson waves due to  an impulsive start 
is also given. The radiation condition, which states that energy must propagate 
away from the disturbance, is included in the analysis so that a study of the wave- 
number surfaces is not required explicitly. The general equations are studied in 
greater detail for several specific cases. One such case considers the wave pattern 
around a two-dimensional body moving on a circular path at supersonic speed, 
and it is shown how the waves approach the pure acoustic waves which would 
occur in a homogeneous fluid (Lilley et al. 1953). Another, much simpler case is 
the wave pattern around a point disturbance moving a t  constant velocity in an 
incompressible fluid. These waves are shown to compare well with schlieren 
photographs of a sphere moving in stratified brine. 
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FIGURE 1. The path of the body. 

2. Analysis 
2.1. Waves around a, moving body 

We consider an isothermal atmosphere which has a conskant buoyancy frequency 
N given by 

where po(z) is the density of the undisturbed fluid, z is the vertical co-ordinate, 
g is the gravitational acceleration, a, is the sound speed and y is the ratio of the 
specific heats. The dispersion relation for a point disturbance (Hines 1960) is 

where w is the frequency associated with the energy propagating from t,he dis- 
turbance and (k,, k,, k3) are the components of the wavenumber k in the (x, y, x) 
directions (see figure 1). The x, y plane is horizontal. [If a, -+ co then this equation 
reduces to the incompressibIe dispersion relation 



Internal waves around a moving body 675 

where N 2  is now - gp;ldp,,/dz. Throughout the following analysis the incompres- 
sible results can be obtained by allowing a, -+ co.] 

At sufficiently large distances from the forcing region, the group velocity c and 
the phase velocity vp are given by (see, for instance, Lighthill 1965) c = V,W and 

The direction of the phase velocity is defined by the angles $ and 7 such that 

VD = (u, w, w) = w(k2, + k; + k;) - l {k l ,  k,, kJ. 

(u ,v ,w)  = ( ( u 2 + . ~ 2 ) * ]  (cos$,sin$, -tany). (3) 
The group velocity, evaluated from the dispersion relation, is given by 

- aM ((G2-1)cos$,(G2-1)sin~, -G2tan7), 
C- 

a, M2G2 - a2 
- _  

where 

(4) 

M is the Mach number &/ao, where Q is the speed of the body. It is assumed 
that the group-velocity concept can be applied to the whole flow field. Schlieren 
photographs have shown this to be a reasonable assumption in stratified brine 
(Stevenson 1973). The analysis is simplified slightly if formulated in terms of 
the phase-velocity direction ($, 7) rather than in terms of the wavenumber 
direction, used in previous papers. This is because energy propagating in a 
particular direction has only one phase-velocity direction but i t  could have two 
wavenumber directions which differ by n-. The dispersion relation can now be 
written in the dimensionless form 

M2(G2-C) -a2(G2sec2q- I )  = 0,  (5) 
where c = y2[4(y- 1)]-1. 

The theory now follows that of Stevenson (1973). A body starts to move a t  
t = to with velocity Q(t)  such that R(t) is its distance from an origin 0 which is 
fixed in the undisturbed background fluid, as in figure 1. The body is at point A 
when t = t,, and energy radiated from this point reaches point P, which is a t  a 
distance r(t) from the origin, a t  time t. Thus 

r(t) = R,+( t - t , )c ,  (6) 

@(t) = ( k . c - w ) ( t - t , ) - W f t , + q 5 , ,  (7) 

where the subscript one refers to conditions at time t,. The phase at P is given by 

where q5, is a constant and wf  is a forcing frequency associated with the body. 
The relation between W f  and w is given by the Doppler equation 

w = wf+Ql.k. (8) 
Any number of forcing frequencies may be included simply by superimposing 
the waves due to each individual value of w f .  Equation ( 7 )  is rearranged to give 

where B = w f / N  and $( t )  = @(t)  - 4, + w f t .  If k is eliminated from (9) then 

N(t  - t l )  = (k.  C / N -  G +B)-' #( t ) ,  (9) 

(Pa2  - a2) $( t )  
G(a2-M2C)+ B(M2G2-a2)' 

N(t-t,) = 

The radiation condition implies that t - t, > 0. 
43-2 
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The phase configuration of the waves generated by a body moving on an 
arbitrary path may be determined from the above equations. Considerable 
simplification occurs, however, if the body moves in the x, x plane such that 
Q = (Q cos8, 0,  Q sin@, where B is the angle which the path of the body makes 
with the horizontal. I n  this case the Doppler equation (8) becomes 

G - B = aG(cos 8, cos $ - sin 0, tan r ) ,  (11) 

where 0, = 0(t,). The expressions for t - t,, equation (lo), and for c, equation (4), 
are substituted into (6) to obtain an equation for the phase configuration. When 
8, is not zero, 7 can be eliminated from this equation using (1 I ) ,  so that 

Nr/Q = NRJQ - {G(a2 - M2C) + B(M2G2 - a')}-, (a( 1 - Gz) cos $, 

a( 1 - G2) sin $, C ( B  - G )  cosec 8, -I- aG2 cot 0, cos $} $ ( t ) ,  (12) 

where, from ( 5 )  and (ll), 

a = {( 1 - G2) sin2 8, - G2 cos2 8, cos2 $}-I [G(B - G )  cos 8, cos @ 

sin el{ (G - B)2 ( 1 - C2) + M2( C - G2) (( 1 - G2) sin2 8, - G2 cos2 0, cos2 $)}a]. 
(13) 

When 8, = 0 , ~  can be eliminated from the equation for r using the dispersion 
relation ( 5 ) ,  so that the equation for the phase configuration becomes 

N r  - NR, 
{G(a2 - M2C) + B(M2G2 - a2)}-l {a( 1 - G2) cos +, a( 1 - G2) sin $, 

Q Q  

where, from (ll),  a = (G-B)/Gcos$.  (15) 

~f: G[G2(M2 - a2) - (M2C- a"]*} $(t ) ,  (14) 

$( t )  varies by 2n between one wave crest and the next. The incompressible results 
can be obtained by writing 121 = 0 in (12)-(15). 

The radiation condition implies that to 6 t, 6 t ,  and if the body stops a t  time 
t ,  < t ,  then t,  6 t,. 

2.2. Impulsive waves 

When the wave system around an impulsive disturbance is considered, then the 
wavenumbers are only restricted to those which satisfy the dispersion relation. 
If the disturbance occurs a t  t = 0 then, from (6), r = ct. 7 is eliminated from the 
expression €or C ,  equation (4), using the dispersion relation, so that 

Equation (1  0 ) ,  after rearranging, becomes 

a2 = M2(G'-G(G'-C) (G+$/Nt) - l } .  

The equations for the phase configuration wdl be considered in some detail 
for several cases in the next section. 



Internal waves around a moving body 677 

FIGURE 2. Two-dimensional waves when the body moves horizontally with 
various Mach numbers. 4 = 277. ---, Mach wedges. 

3. Specific solutions 
3.1. A body moving horizontally 

The first case that will be considered is the two-dimensional wave pattern about a 
horizontal cylinder moving horizontally with constant velocity. If the body has 
been travelling for an infinite time we let to = - 00 and put R, = (Qtl, 0) and 
@ = 0 in (14). In  order to evaluate the phase configuration relative to the body 
we write ( X ,  2) = r - (Qt, 0 )  so that, from (lo), (14) and (15), 

N ( X ,  Z)/Q = - {G(a2- M2C)  +B(M2G2 - a')}-' {a( 1 - G2) + (M2G2 - a2), 

& G[G2(W- a2) - (M2C2 - a2)]i} 4(t), (18) 

These equations have been used to calculate the steady waves, for several Mach 
numbers, shown in figure 2. A value of 2n has been used for Q and, in this and 
subsequent examples, y = 1.4 and C = 1.225. When M = 0 a line of constant 
phase is a semicircle behind the cylinder: the usual lee-wave solution. When $1 
is between zero and C-9, a line of constant phase is a semiellipse with the major 
axis vertical. The wave spacing, the distance between one wave crest and the 
next with the same wavenumber, increases a5 M increases and becomes infinite 
when M = C-4. There are no waves if C-4 < M < I .  For Jl > 1 the waves are 
hyperbolas with the Mach wedge as asymptote. 

Oscillatory waves for various forcing frequencies at a Mach number of 2 are 

where E = (G - B)/G.  (19) 
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FIGURE 3. Two-dimensional oscillatory waves when the body is moving horizontally at  
M = 2.  The arrows indicate the direction in which the lines of constant phase move relative 
to the body. q5 = 271. ---; B = 0.5; --,-, B = C*; --, B = 1.5; -- , Mach wedge. 
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FIGURE 4. Two-dimensional oscillatory waves when the body is moving horizontally at  
M = 0.5. The arrows indicate the direction in which the lines of constant phase move relative 
to the body. y5 = 271. ----, B = 0.1; ---, 3 = 0 . 5 ; - - - ,  B = 0.9; -, 3 = 1.5. 



Internal waves around a moving body 

4 
679 

FIGURE 5 .  Impulsive-start waves. , acoustic waves. Nt = l o r ;  
q!~ = 2nn with n = 1, 2, 3, 4. 

shown in figure 3. Closed internal waves with four cusps occur at  all frequencies, 
and a pair of acoustic waves is present when 0 < IE( < Ct.  As IBI -+ Ct the 
acoustic waves approach one another, and they merge and become a closed curve 
passing through ( - G O ,  0) when [El = C4. The closed acoustic wave decreases in 
size as 1B1 increases and is shown in figure 3 for B = 1-5. All the waves are within 
the Mach wedge. 

Figure 4 shows oscillatory waves for several va,lues of B ah M = 0.5. For small 
IBI the waves are like the incompressible waves described by Stevenson & 
Thomas (1969). At larger IBI acoustic waves are present and behave like those for 
M = 2 except of course that they can propagate ahead of the body and are not 
bounded by a Mach wedge. 

3.2. Cauchy-Poisson waves 

The equations of 5 2.2 with $ = 0 have been used to evaluate the two-dimensional 
impulsive waves shown in figure 5. The cusped internal waves are formed near 
the x axis and move towards higher 1x1. These impulsive waves were discussed 
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-2t 
FIGURE 6. A body which started from the origin moves with constant velocity at 45" to 
the horizontal. Nt = 10. ---, waves with Q = in; --- ,waves with 9 = $rr; ---:-, locus 
of energy. (a )  M = 0.5. ( b )  M = 2.0. 

by Cole & Greiffinger (1969) in a study of atmospheric waves produced by an 
earthquake or nuclear explosion. In the next subsection it will be showiihow the 
impulsive waves merge with the steady wave system. 

3.3. The steady wawe system which develops ufter a body starts f rom rest 

Rarity (1973) and Silcock (1973) have discussed the wave system around a two- 
dimensional body which has been travelling at  an angle to the horizontal with 
constant velocity for an infinite time. Consequently only the waves around a 
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FIGURE 7. Steady horizontal motion of a body which started impulsively at the origin. 
Nt = 10n; M = 0.5; $ = 2n7r with n = 1, 2 ,  3 ,  4. -, ' steady' internal wave system; 
_-_-  , locus of energy of steady wave system; --- , impulsive waves. Only the impulsive 
wave system for ~t: > 0 is shown. 

FIGURE 8. Steady horizontal motion of a body which started impulsively a t  the origin. 

energy of steady wave system; - -- , acoustic impulsive waves. Only the impulsive wave 
system for x > 0 is shown. 

M = 2.0; $ = 2nn with n = 1,2, ..., 5. -, steady acoustic wave system; ---- , locus of 
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FIGURE 9. Two-dimensional oscillatory waves when the body is moving a t  45" to the hori- 
zontal, having started from the origin. B = 1.5; w,t = 10; Q = in+ 2n7r with n = 0, 1, 2, 3. 
( a )  M = 0.5. ( b )  M = 2.0, showing the Mach wedge (- - - - - -). 
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body which has been moving for a finite time will be presented here. Equations 
(12) and (13) with 9 = 0 have been used to evaluate the waves shown in figure 6. 
The body started to move a t  the position x = x = 0 and travelled at 45" to the 
horizontal a t  Mach numbers of 0.5 and 2.0. When M > 1 the acoustic waves again 
have the Mach wedge as asymptot'e. The energy envelopes, the boundaries within 
which energy is to  be found, are also shown in the figure. 

The way in which the waves merge with the impulsive-start waves is shown in 
figures 7 and 8 for Mach numbers of 0-5 and 2.0 with 8 = 0". The impulsive waves 
are tangential to the initial part of the moving-body waves. 

Examples of the oscillatory wave system with a frequency ratio of 1.5 are 
shown in figures 9 (a )  and (b) ,  where M = 0.5 and 2.0 respectively and 0 = 45". 

3.4. Three-dimensional waves around a sphere 

Equations (12)-( 15) with M = 0 have been used t o  evaluate the incompressible 
waves shown in figures 10 and 11 (plates 1 and 2). The schlierenphotographs in 
these figures show the waves which develop around a moving sphere. The photo- 
graphs were taken using t.he experimental equipment described by Stevenson 
(1973). There is reasonable agreement between the theory and the experiments, 
except in the case of figures l O ( e )  and (f), which show a large sphere, with a 
complicated wake, producing its own oscillatory wave system. 

Figures 12 and 13 illustrate several compressible solutions for the waves 
around a point disturbance moving horizontally. As the solutions are sym- 
metric about the line of motion, only half of the wave system is shown. Solutions 
in planes y = constant are given above the x axis and those in planes z = constant 
below the x axis. 

3.5. A circular path in a vertical plane 

A two-dimensional body starts from a position ( - R, 0 )  and travels on a circular 
path of radius R with angular frequency w,, such that w, R = Q. Thus 

Q = (sin w,tl, cos w,t,) Q .  R, = ( - cos w,tl, sin w,t,) R and 

With 9 = 0 equations (12) and (13) become 

x {a( 1 - G2) ,  G(B - G )  sec w,tl + G2a tan wetl} 4, (20) 
where 

G ( B  - G )  sin w,tl f cos wct1{(G - B)2 (1 - G2)  + M2(C - G z )  (cos2wctl - 
a =  

C O S ~  W, t1- G2 
(21) 

These are solved in conjunction with (10) and the radiation condition. Figures 14 
and 15 show the waves that develop when a body travels a t  Mach numbers 
of 0.5 and 2.0 with an angular frequency w, of 0 - I N .  Figure 15 also shows the weak 
shock waves which would occur if there was no stratification (Lilley et al. 1953). 
Figure 16 shows an oscillatory system with M = 0.5 and B = 0.5. 
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FIGURE 12. A point disturbance moves at  constant velocity in the horizontal plane. ,4s the 
lines of constant phase are symmetric about the x: axis, solutions in planes y = constant and 
z = constant are drawn above the z axis and below it respectively. 4 = 27~. (a) M = 0.5. 
( b )  A 1  = 2.0. 
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FIGURE 13. An oscillating point disturbance moves with a constant mean velocity in the 
horizontal plane. Solutions in planes y = constant and z = constant are drawn above and 
below the x axis respectively. M = 0.5; # = 2n; B = 0.5. 

FIGURE 14. A two-dimensional body moves on a circular path in the x, z plane with a constant 
angular velocity, having started from ( - R, 0) .  wet = 6.0; w,/N = 0.1; $ = (2n+ 1) ?r with 
12 = 0,1,  ..., B;M = 0.5. 
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FIGURE 15. A two-dimensional body moves on acircular path in the x, z plane with a constant 
angular velocity, havingstartedfrom ( -R, 0 ) ,  o,t = 6.0; w,/N = 0.1; M = 2.0, --., ----, 
(acoustic) Q = 77; -. .-. .-, -.-. (acoustic) Q = 377; -, weak shock position. 

FIGURE 15. A two-dimensional body moves on acircular path in the x, z plane with a constant 
angular velocity, havingstartedfrom ( -R, 0 ) ,  o,t = 6.0; w,/N = 0.1; M = 2.0, --., ----, 
(acoustic) Q = 77; -. .-. .-, -.-. (acoustic) Q = 377; -, weak shock position. 
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FIGURE 17. A two-dimensional body, starting from rest, moves with constant acceleration in 
a horizontal plane until M = 2.0. As the lines of constant phase are symmetric about the x 
axis, only half of each wave system is shown (acoustic waves above the axis). -,weak- 
shock position. 

The positions of the weak shock waves are obtained from the equations in this 
paper by letting $IN2 -+ 1 as N -+ 0 with B = 0. In  the case of the circular path 

The equations may be applied to a body whose velocity varies with time, and in 
this final sub-section the simple case of a two-dimensional body moving with a 
constant acceleration in a horizontal plane is considered. A body with a Mach 
number M ,  begins to accelerate at time t ,  and we look a t  the wave system which 
has developed at time t ,  when the Mach number is M .  

Equations (lo), (14) and (15) give the following equation for the phase con- 
figuration: 
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FIGURE 10. A sphere moves horizontally with a constant velocity of 13 mm/s. The schlieren 
photographs show a sphere of 25mm diameter in ( a )  and ( b ) ,  and of 50mm in ( e )  and (f). A 
vertical knife edge was used for ( a )  and ( e )  and a horizontal knife edge for ( b )  and (f). The 
theoretical solution in the plane y = 0 is shown in (c) and the solution corresponding to 
y/$ = 2/7r in ( d ) .  The solid lines are steady waves and the broken lines are impulsive waves. 
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The waves evaluated from these equations would be superimposed on the 
pseudo-steady wave system which was generated before t ,  [calculated from ( 1  8) 
and (19)] together with the impulsive wave system generated at time t,. 

In  figure 17, lines of constant phase calculated from (24)-(27) are shown for a 
body which started from rest and has reached M = 2. The phase q5 is given by 

I$ = 277NTK2 x 

and the waves are plotted for particular values of K .  Thus, as expected, the lower 
the acceleration the larger the number of waves present. The higher the Mach 
number the larger is the wave spacing. The wave shown as the solid line in figure 
17 is the pure acoustic wave which would result from motion in a homogeneous 
fluid. 

4. Conclusions 
Equations have been derived for the internal waves and gravity-modified 

acoustic waves which develop around a body moving on an arbitrary path in a 
compressible fluid with a constant buoyancy frequency. The wave patterns have 
been calculated using the radiation condition during the computation and the 
wavenumber surfaces have not been used explicitly. Solutions have been 
obtained for several cases including the two limiting cases of a sphere moving 
in an incompressible fluid and a two-dimensional body moving supersonically 
in a compressible fluid which is not stratified. The former has been shown to agree 
with experiments in stratified brine and the latter with the previous calculations 
of Lilley et al. (1953). 

The authors appreciate the helpful discussions with Professor N. H. Johan- 
nesen. The work was supported by the Procurement Executive, Ministry of 
Defence. K. S. Peat was in receipt of a Science Research Council Maintenance 
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FIGURE 1 1 .  A sphere moves at constant velocity in the plane y = 0 a t  an angle B to the hori- 
zontal. The theoretical solutions are in the plane y = 0. ( a )  B = 20°, Q = 9.2 mm/s and B = 0. 
( b )  B = 20", Q = 2.9mm/s and B = 0.64. (c) 0 = 0", Q = 2.9mm/s and B = 0.61. The scalc 
marks are of length 1 O O m m .  
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